
Experiences Typesetting OpenType Math with
LuaLATEX and XƎLATEX
Zkušenosti se sazbou matematiky ve formátu
OpenType math v LuaLATEXu a XƎLATEXu

Ulrik Vieth

Abstract: When LuaTEX first provided support for OpenType math ty-
pesetting in version 0.40, high-level macro support for math typesetting
was first developed for ConTEXt MkIV, while support for LuaLATEX was
initially limited to a very low-level or non-existent. In the meantime, this
gap has been closed by recent developments on macro packages such as
luaotfload, fontspec, and unicode-math, so LATEX users are now provided
with a unified high-level font selection interface for text and math fonts
that can be used equally well with both LuaLATEX and XƎLATEX. While
a unified high-level interface greatly improves document interchange and
eases transitions between systems, it does not guarantee that identical
input will always produce identical output on different engines, as there
are significant differences in the underlying implementations of math ty-
pesetting algorithms. While LuaTEX provides a full-featured implemen-
tation of OpenType math, XƎTEX has taken a more limited approach
based on a subset of OpenType parameters to provide the functionality
of traditional TEX engines.

Given the possibility of running exactly the same test files on both
engines, it now becomes feasible to study those differences in detail and
to compare the results. Hopefully, this will allow to draw conclusions
how the quality of math typesetting is affected and could be improved by
taking advantage of a more sophisticated, full-featured OpenType math
implementation.
Key words: LuaLATEX, XƎLATEX, OpenType math, math typesetting,
fontspec package, Cambria, Asana, XITS, Neo Euler.

Abstrakt: Jelikož LuaTEX podporuje Open Type math až od verze 0.40,
byla podpora matematické sazby na vyšší úrovni vytvořena nejprve pro
ConTEXt MkIV, zatímco podpora pro LuaLATEX byla nízká nebo nebyla
žádná. Další vývoj však tuto mezeru zacelil – uživatelé LATEXu mají nyní
k dispozici jednotné rozhraní pro připojení fontů pro běžný text i pro
matematickou sazbu pomocí balíčků luaotfload, fontspec a unicode-math;

116 doi: 10.5300/2011-2-4/116

obojí lze celkem stejně dobře využít v LuaLATEXu i v XƎLATEXu. I když
toto jednotné rozhraní značně zjednodušuje výměnu dokumentů i přenos
mezi různými systémy, nezaručuje, že tentýž vstup vytvoří vždy tentýž
výstup na různých počítačích kvůli významným odlišnostem v implemen-
taci algoritmů pro matematickou sazbu. Zatímco LuaTEX poskytuje úpl-
nou implementaci všech vlastností OpenType math, XƎTEX převzal jen
část z nich s ohledem na tradiční implementace TEXu.

Maje možnost překládat stejné testovací soubory v obou implemen-
tacích, bylo možné podrobně zkoumat jejich rozdíly a porovnat výslednou
matematickou sazbu. Doufejme, že toto přispěje k zjištěním, co ovlivňuje
kvalitu matematické sazby a jak ji zlepšit implementací výhod komplet-
ního formátu OpenType math.

Klíčová slova: LuaLATEX, XƎLATEX, formát OpenType math, sazba ma-
tematiky, balíček fontspec, Cambria, Asana, XITS, Neo Euler.

117

Ulrik Vieth CONTEXT MEETING 2010 1

Experiences typesetting OpenType
math with LuaLaTEX and XeLaTEX
Abstract
When LuaTEX first provided support for OpenType math typesetting in version 0.40, high-level macro support for
math typesetting was first developed for ConTEXt MkIV, while support for LuaLaTEX was initially limited to a very
low-level or non-existent. In the meantime, this gap has been closed by recent developments on macro packages
such as luaotfload, fontspec, and unicode-math, so LaTEX users are now provided with a unified high-level font
selection interface for text and math fonts that can be used equally well with both LuaLaTEX and XeLaTEX.
While a unified high-level interface greatly improves document interchange and eases transitions between systems,
it does not guarantee that identical input will always produce identical output on different engines, as there are
significant differences in the underlying implementations of math typesetting algorithms. While LuaTEX provides a
full-featured implementation of OpenType math, XeTEX has taken a more limited approach based on a subset of
OpenType parameters to provide the functionality of traditional TEX engines.
Given the possibility of running exactly the same test files on both engines, it now becomes feasible to study those
differences in detail and to compare the results. Hopefully, this will allow to draw conclusions how the quality of
math typesetting is affected and could be improved by taking advantage of a more sophisticated, full-featured
OpenType math implementation.

LuaTEX math

Δ𝑬 −
1

𝑐􀆨
𝜕􀆨𝑬

𝜕𝑡􀆨
=

1

𝜀􀆦
𝛁𝜆 + 𝜇􀆦

𝜕𝒋

𝜕𝑡
,

Δ𝑩 −
1

𝑐􀆨
𝜕􀆨𝑩

𝜕𝑡􀆨
= −𝜇􀆦 rot 𝒋 .

1
XeTEX math

Δ𝑬 − 1
𝑐ଶ

𝜕ଶ𝑬
𝜕𝑡ଶ = 1

𝜀଴
𝛁𝜆 + 𝜇଴

𝜕𝒋
𝜕𝑡 ,

Δ𝑩 − 1
𝑐ଶ

𝜕ଶ𝑩
𝜕𝑡ଶ = −𝜇଴ rot 𝒋 .

1
Can you spot the difference?

Δ𝑬 − 1
𝑐ଶ

𝜕ଶ𝑬
𝜕𝑡ଶ = 1

𝜀଴
𝛁𝜆 + 𝜇଴

𝜕𝒋
𝜕𝑡 ,

Δ𝑩 − 1
𝑐ଶ

𝜕ଶ𝑩
𝜕𝑡ଶ = −𝜇଴ rot 𝒋 .

1

Δ𝑬 −
1

𝑐􀆨
𝜕􀆨𝑬

𝜕𝑡􀆨
=

1

𝜀􀆦
𝛁𝜆 + 𝜇􀆦

𝜕𝒋

𝜕𝑡
,

Δ𝑩 −
1

𝑐􀆨
𝜕􀆨𝑩

𝜕𝑡􀆨
= −𝜇􀆦 rot 𝒋 .

1

% !TeX program = lualatex
\documentclass[fleqn]{article}
\usepackage{fontspec,unicode-math}
\setromanfont{Cambria}
\setmathfont{Cambria Math}
\begin{document}
\input{luatex-fixes}
\input{math-test}

\end{document}

% !TeX program = xelatex
\documentclass[fleqn]{article}
\usepackage{fontspec,unicode-math}
\setromanfont{Cambria}
\setmathfont{Cambria Math}
\begin{document}
\input{xetex-fixes}
\input{math-test}

\end{document}

% !TeX program = pdflatex
\documentclass{article}
\usepackage{pdfpages}
\begin{document}
\includepdfmerge

[nup=2x1,noautoscale=true,delta=-21cm 0]
{xelatex-test.pdf,1,lualatex-test.pdf,1}

\end{document}

2 CONTEXT MEETING 2010 Ulrik Vieth

Introduction
In this paper, we will review the state of recent devel-
opments of new TEX engines and corresponding macro
packages to supportmath typesettingwith Unicode and
OpenType math fonts, based on our experiences from
testing the TEX Live 2010 pretest distribution [1].

In the first part, we will summarize the available
choices of TEX engines and macro packages, as well as
the available choices of math fonts, which can be used
for testing OpenType math typesetting.

In the second part, we will report our experiences
testing the various TEX engines, macro packages and
fonts, and we will report our findings which kind of
problems were encountered and how these problems
were resolved or circumvented.

In the third part, wewill analyze and compare the re-
sults of running identical documents through different
TEX engines using different implementations of math
typesetting algorithms, and we will try to draw conclu-
sions how the quality of math typesetting is affected
and could be improved.

Reviewing the state of OpenType
math support in TEX Live 2010
In recent years, many developments related to new TEX
engines and corresponding macro packages and fonts
have focused on providing support for Unicode and
OpenType, not just for text typesetting, but also for
math typesetting (which is still important as one of the
traditional strong-holds of TEX).

Unicode and OpenType math technology
While the pre-history of Unicode text support dates
back to themid-1990s, most activities related to Unicode
math support only became possible during the last few
years, after a suitable font technology was developed as
an extensions to the OpenType font format.

When the efforts to bring math into Unicode were
started in the late 1990s by a consortium of scientific
publishers, the original focus was on identifying math
symbols and getting them accepted into Unicode [2, 3].
Once this was done, the focus shifted to developing a
reference font implementation, the so-called STIX fonts,
to provide the necessary glyph shapes [4].

While the STIX project was spending nearly a decade
waiting for fonts to be designed, the lack of a suitable
font technology for math typesetting was overlooked
for a long time. While traditional TEX font formats sup-
portedmath typesetting in their ownway, they suffered
from limitations and questionable design decisions [5].

On the other hand, mainstream font formats such as
OpenType did not provide any support for the seman-
tics of math typesetting.

Ironically, the lack of a suitablemath font technology
was only resolved when Microsoft started to develop
support for MS Office 2007. Given their influence as a
vendor controlling the OpenType font specification [6],
they simply went ahead and created an extension of the
OpenType font format containing aMATH table [7] and
commissioned the design of Cambria Math as a refer-
ence implementation of an OpenType math font [8, 9].
In addition, they also developed a simplified math input
language known as ‘linear math’ [10].

While there are sometimes strong reservations about
accepting a vendor-defined file format, especially an
unreleased one coming from Microsoft, developers of
font tools such as FontForge [11] as well as developers
of TEX engines were willing to accept OpenType math
as a de facto standard, because it filled a need and also
because it turned out to be well-designed.

Upon closer analysis, many concepts of OpenType
math could be seen as obvious extensions or general-
izations of traditional concepts of math typesetting in
TEX [12]. Moreover, most OpenTypemath font parame-
ters could be identified to have a direct correspondence
to TEX math font parameters [13], which had also been
carefully analyzed in previous studies [14, 15].

OpenType math support in TEX engines
When XeTEX first added OpenType math support in
version 0.997 as of 2007 [16], it kept TEX’s traditional
math typesetting algorithms essentially unchanged and
only used a small subset of OpenType font parameters
to initialize the required TEX font parameters.

When LuaTEX also added OpenType math support
in version 0.40 as of 2009 [17, 18, 19], it introduced
a number of extensions and generalizations to TEX’s
math typesetting algorithms, aiming to provide a full-
featured implementation of OpenType math.

As of TEX Live 2010, both new TEX engines support-
ing Unicode and OpenTypemath typesetting have been
added to themainstream distributions and have become
widely available for using and testing the new features.
However, their acceptance also depends on providing
adequate macro package and font support.

OpenType math support in macro packages
When XeTEXwas first added to TEX distributions, it was
easily accessible to LaTEX users with XeLaTEX. A high-
level font selection interface for text fonts was devel-
oped with the fontspec package [20, 21], which became
widely used as a standard package for XeLaTEX.

118

Experiences typesetting OpenType math with LuaLaTEX and XeLaTEX CONTEXT MEETING 2010 3

When XeTEX added math support, a corresponding
high-level font selection interface for math fonts was
also developedwith the unicode-math package [22], but
unlike fontspec it wasn’t released until recently.

When LuaTEX added math support, high-level macro
support was initially developed for ConTEXt MkIV [23],
while macro support for LuaLaTEX (or Plain LuaTEX)
was initially limited to the luaotfload package [24],
which provided only a low-level interface.

As of TEX Live 2010, LaTEX macro package support
for Unicode and OpenType math typesetting has been
much improved, as both the fontspec and unicode-
math packages have undergone a complete rewrite,
adding support for LuaLaTEX (based on luaotfload) to
the code originally developed for XeLaTEX.

As a result, LaTEX users are now provided with a
unified high-level font selection interface for text and
math fonts [25] that can be used equally well with both
XeLaTEX and LuaLaTEX.

Given this interface, selecting a different math font
(such as Cambria Math) can be as easy as this:

\usepackage{fontspec,unicode-math}
\setmainfont[<options>]{Cambria}
\setmathfont[<options>]{Cambria Math}

Using the options of \setmathfont, a number of details
of math typesetting can be easily configured, includ-
ing the behavior of math alphabets (such as upright vs.
italic for normal and bold, uppercase and lowercase,
Latin and Greek), which will make it much easier to
support the specific requirements of math typesetting
in various fields of sciences [26].

OpenType math fonts
Regardless of font technology, developing math fonts
has always been far from easy and choices ofmath fonts
have always been severely limited. In this respect, the
situation of OpenType fonts today is not much differ-
ent from the situation of PostScript fonts in the 1990s.
While there are countless choices of text fonts, there
are only very few math fonts available, and even fewer
of them are freely available.

As of mid-2010, we have the following choices of
OpenType math fonts at our disposal:

Cambria Math [8], the original reference math font,
commissioned by Microsoft for Office 2007,
Asana Math [27], a Palatino-like math font derived
from a repackaging of the mathpazo fonts,
XITSMath [28], a Times-like math font derived from
a repackaging of the STIX fonts [29],
Neo Euler [30], an upright math font derived from
Hermann Zapf’s redesign of AMS Euler fonts [31].

Except for Cambria Math, all of these fonts all are
freely available, either from CTAN (if already released)
or from GitHub (if still under development).

As of TEX Live 2010, Asana Math and XITS Math are
both included in the distribution, but Cambria Math
and Neo Euler have to be obtained separately and need
to be installed manually in your texmf-local tree.

Once installed, each of the fonts can be used in the
sameway, but the range of symbols andmath alphabets
available may differ significantly between fonts.

Experiences testing OpenType
math support in TEX Live 2010
Testing the functionality and quality of OpenTypemath
typesetting implies testing a complex system, consist-
ing of typesetting engines, macro packages and fonts
(with embedded intelligence), which have to interact
properly to produce the desired results.

Given the inherent complexity, there are a large
number of problems which can occur, and most likely
will occur, so we have to consider the possibilities of
engine problems, macro problems, font problems and
font loading issues.

Problems with TEX engines
Problems with TEX engines can be of several differ-
ent kinds, ranging from fatal ones (such as unexpected
crashes or malfunctions) to more subtle ones (such as
hidden bugs in themath typesetting algorithms produc-
ing incorrect results).

Traditionally, TEX engines have enjoyed a reputa-
tion of being extremely robust and totally free of bugs.
Unfortunately, such expectations no longer hold true
when it comes to new TEX engines, which are under
active development and which don’t have the luxury of
two decades of time to eliminate all possible bugs.

Engine problems of the fatal kind are therefore a very
real possibility, which may even prevent or delay fur-
ther testing until the problems can be resolved.

While testing the TEX Live 2010 pretest distribution,
a number of problems were encountered for XeTEX
on some 64-bit Linux platforms, resulting in crashes
or malfunctions upon loading OpenType math fonts,
which are likely to be caused by incompatibilities with
external library dependencies.

Unfortunately, there was not enough time to debug
these problems before the deadline for the TEX Live 2010
binaries, so the problems remain unresolved for now
and need to be revisited eventually. As a workaround,
it may be possible to use 32-bit binaries on 64-bit Linux
platforms, which do not exhibit such problems.

119

4 CONTEXT MEETING 2010 Ulrik Vieth

𝛾𝛼⎛⎜
⎝

ℏ
i
∂𝛼 − 𝑞𝐴𝛼

⎞
⎟
⎠
𝜓 + 𝑚􀁫𝑐 𝜓 = 0 ,

𝛾𝛼􀊂
ℏ
i
∂𝛼 − 𝑞𝐴𝛼􀊅𝜓 + 𝑚􀁫𝑐 𝜓 = 0 .

Figure 1: Comparison of the size of delimiters in Asana Math
for LuaTEX 0.60.x and LuaTEX 0.61. Due to a bug in the math
typesetting algorithms, the extensible version of delimiters was
applied too soon. (The example shows the Dirac equation from
relativistic quantum mechanics.)

Engine problems of the more subtle kind were found
in LuaTEX, when a bug was discovered for some math
fonts (such as Asana Math), which resulted in applying
the extensible version of delimiters before exhausting
all available sizes of big delimiters. (An example of the
incorrect behavior is illustrated in Figure 1.)

In the meantime, this bug has already been fixed in
LuaTEX 0.61, but again it was too late to include the fix
in TEX Live 2010 which still uses LuaTEX 0.60.x.

Problems with OpenType font metrics
Problems with OpenType fonts can also be of different
kinds, ranging from fatal ones (such as containing mal-
formed data structures causing TEX engines to crash) to
more subtle ones (such as providing incorrect values of
font metric parameters causing TEX engines to produce
incorrect results). In addition, font problems can also
include encoding issues or incorrect glyph shapes.

Font problems of the fatal kind did not occur while
testing OpenType math fonts, but a similar kind of
problemwas recently reported for some OpenType text
fonts. The problem was quickly addressed with a fix in
LuaTEX 0.61 to make the font parsing algorithms more
robust about handling unexpected values.

Font problems of the more subtle kind were found
with incorrect parameter settings in the MATH table of
Cambria Math and Asana Math, which caused LuaTEX
to produce incorrect results.

The problem is related to the OpenType math pa-
rameter DisplayOperatorMinHeight, which is used in
LuaTEX to determine the minimum size of displaystyle
operators. If this parameter is incorrectly set too small
in the font, displaystyle operators will appear in the
same size as textstyle operators. (An example of the
incorrect behavior is illustrated in Figure 2.)

As it turned out, the problem had already been found
earlier when OpenType math support in LuaTEX was
first tested with ConTEXt, and a workaround had been
applied, but the same problem now reappeared when
LuaTEX was tested with LuaLaTEX.

∫
􀈱
𝜀􀆦𝑬 ⋅ d𝒇 = ∫

􀉁
𝜆 d𝑉, ∫

􀈱
𝑩 ⋅ d𝒇 = 0 ,

∫
􀈱

𝜀􀆦𝑬 ⋅ d𝒇 = ∫
􀉁

𝜆 d𝑉, ∫
􀈱

𝑩 ⋅ d𝒇 = 0 .

Figure 2: Comparison of the size of displaystyle operators in
Cambria Math for LuaTEX with incorrect parameter values of
DisplayOperatorMinHeight and with a correction applied at the
macro level. (The example shows the integral form of the
Maxwell equations from electrodynamics.)

In ConTEXt, a patch for incorrect font parameters
had been applied in the font loading code at the Lua
level in font-pat.lua, but a similar patch was missing
in luaotfload. Until this is fixed, a workaround to the
same effect can be applied at the macro level by setting
\Umathoperatorsize\displaystyle=13.6pt.

In any case, such kinds of patches for specific font
parameter values only present a stop-gap solution until
the actual fonts can be fixed. Whether or not this will
be possible, critically depends on the cooperation of the
font developer or distributor and may range between
very quickly (for some open source projects) and next
to impossible (for some commercial fonts).

Problems with OpenType font shapes
Font problems of yet another kind can occur when the
assignment of glyph shapes to Unicode slots does not
match the expectations, or when an incorrect font style
is used for some glyphs.

One such problem was discovered for the partial
differential symbol in Cambria Math and XITS Math.
Since Unicode math provides a separate slot for a math
italic version (U+1D715), one would expect the default
slot (U+2202) to be reserved for the upright version, yet
the Unicode font tables incorrectly happen to show an
italic version in both slots and no upright version.

Given the confusion in the Unicode font tables, it is
not surprising that several OpenType math fonts have
inherited the same problem. Unfortunately, such font
problems are unlikely to be fixed anytime soon.

∂ 𝜕 𝛛 𝝏 Cambria Math

∂ 𝜕 𝛛 𝝏 XITS Math

∂ 𝜕 𝛛 𝝏 Asana Math

Figure 3: Comparison of different font shapes of the partial
differential symbol (upright, italic, bold upright, bold italic) as
they appear in Cambria Math, XITS Math, and Asana Math.
Besides the confusion of upright vs. italic there are also some
obvious problems for some of the bold italic versions.

120

Experiences typesetting OpenType math with LuaLaTEX and XeLaTEX CONTEXT MEETING 2010 5

Problems with TEX macro packages
Problems with TEX (or Lua) macro packages are usually
easy to fix. In the course of the TEX Live 2010 pretest,
a number of such issues were found in luaotfload and
unicode-math, which have already been fixed.

Only one issue has remained unresolved, which is
related to the use of the \hbar macro. In a traditional
LaTEX setting, \hbar is a macro which overlays the
italic letter ℎ with a bar accent from cmr to produce ℎ̄.
By contrast, \hslash is a macro to access a ready-made
glyph from the AMS fonts to produce ℏ.

In a Unicode math setting, only \hslash is assigned
to a slot in an OpenTypemath font (U+210F), while there
is no equivalent assignment for \hbar, which has some-
how retained its original macro definition and still uses
a glyph from cmr to create the overlay. For lack of a
better solution, it would be better to define \hbar as an
alias for \hslash in unicode-math.

Quite a different effect occurs in ConTEXt, where
\hbar is interpreted as a diacritic text character (ħ) in
upright shape (U+0127), which may be appropriate in
text typesetting, but not necessarily in a math formula.
As in unicode-math, it would be better to define \hbar
as an alias for \hslash in ConTEXt as well.

Problems caused by interactions between
TEX macro packages and TEX engines
Yet another kind of problem was discovered recently,
which was caused by an interaction problem between
macro packages and TEX engines, specifically between
the unicode-math package and the XeTEX engine.

As it turned out, unicode-math allocated a newmath
family for the OpenType math font (such as family 4)
while XeTEX (unlike LuaTEX) somehow still expected
certain math font parameters to be taken from families
2 and 3 (as in traditional TEX engines).

As a result, the preloaded font metric parameters
from cmsy and cmexwere incorrectly used to determine
the spacing of math instead of the font parameters from
the OpenType math font.

A fix for this problem is still pending, but most likely
it would involve changing the unicode-math package
to account for different engine-specific behaviors of
LuaTEX and XeTEX. As a workaround, we can apply
a fix by reassigning the fonts in families 2 and 3 after
loading an OpenType math font in family 4:

\ifxetex\everymath{
\textfont3 = \textfont4
\textfont2 = \textfont4
\scriptfont2 = \scriptfont4
\scriptscriptfont2 = \scriptscriptfont4

}\fi

Font-loading problems
Font-loading problems are usually easy to fix or avoid,
once the cause of the problem has been understood.
Nevertheless, such kinds of problems present a frequent
source of frustration for unwary users, so it may well
be useful to discuss our experiences regarding the font
loading problems we encountered in the course of test-
ing OpenType math with TEX Live 2010.

What is important here is to understand that differ-
ent mechanisms are used to locate OpenType fonts in
different TEX engines and macro packages.

In XeTEX, the fontconfig library is used to locate
OpenType fonts, and this mechanism applies equally
well for system fonts installed in the system font path
as for fonts installed in your TEX Live distribution.

Depending on your installation, it may be necessary
to adjust the fonts.conf config file to include the font
directories in your texmf-dist or texmf-local tree, and
to refresh the font cache with the fc-cache command.
Once a font directory has been added to the search path,
all kinds of font files will be found there, regardless of
where the font files are located.

In LuaTEX, the kpathsea path searching library is
used to locate fonts, which depends on the assignment
of file extensions (such as *.ttf or *.otf) to different
search paths. As a result of this, cambria.ttc will only
be found in the fonts/truetype tree, while euler.otf
will only be found in the fonts/opentype tree.

In addition to that, ConTEXt and luaotfload on
LuaTEX use yet another font-loading mechanism based
on a file cache implemented in Lua, which circumvents
the kpathsea library completely. System fonts outside
the TEXMF tree will be located using the fonts.conf
config file to look up the font directories, but without
using the the fontconfig library. Once a font directory
has been added to the file cache, all kinds of font files
will be found there, regardless of where the fonts are
located, similar to the fontconfig library.

Comparing and testing the quality
of OpenType math typesetting
To proceed with a study the quality of OpenType math
font support as of TEX Live 2010, we have the follow-
ing choices of typesetting engines and macro packages
at our disposal (disregarding Plain LuaTEX and XeTEX
which only provide low-level support):

LuaTEX with ConTEXt MkIV
LuaTEX with LuaLaTEX
XeTEX with XeLaTEX

121

6 CONTEXT MEETING 2010 Ulrik Vieth

While both LuaLaTEX and ConTEXt share the same
TEX engine and the same implementation of math type-
setting algorithms, they differ in their high-level user
interface and also in the intermediate levels of font
loading code (such as luaotfload).

While both LuaLaTEX and XeLaTEX share the same
user interface of unicode-math and fontspec, they are
based on different TEX engines, LuaTEX and XeTEX,
which differ significantly in their implementations of
math typesetting algorithms.

Comparing the results of LuaLaTEX and ConTEXt
should not be expected to expose any differences in the
output from identical math typesetting algorithms, but
if there are any differences, a closer analysis should help
to detect bugs or inconsistencies in the different macro
packages and/or in the font loading code.

Comparing the results of LuaLaTEX and XeLaTEX,
however, should indeed be expected to expose some
differences in the underlying typesetting algorithms.
Hopefully, an analysis of these differences should allow
to draw conclusions how the quality of math is affected
and could be improved by taking advantage of a full-
featured implementation of OpenType math.

Testing a sampling of OpenType math
When we began testing OpenType math support with
TEX Live 2010, we didn’t have time to do systematic and
comprehensive testing, which would have been a very
time-consuming and tedious task.

Instead, we wanted to get some quick impressions
how well OpenType math support worked and if it
would be ready for practical use, so we concentrated
on testing just a sampling of mathematical notations.
Given our personal background in typesetting mathe-
matical physics, we started by creating a sample test
document containing a selection of famous equations
from various fields of physics, sampling various kinds
of mathematical notations.

In addition to testing the available choices of TEX
engines and macro packages, we also wanted to test a
sampling of the available OpenType math fonts, so we
proceeded to typeset identical copies of our test files
with different TEX engines and with different choices
of math fonts for each of Cambria Math, XITS Math,
Asana Math, and Neo Euler.

Some examples of typesetting such test pages with
different fonts are shown in Figures 8–11, except that
each font sample was usually typeset at least twice with
LuaLaTEX and XeLaTEX.

In some cases, we also tested an additional version
with ConTEXt MkIV, but unfortunately we had to use a
modified version of our test files in such cases.

Δ𝜙(𝒓) = 𝜕ଶ𝜙
𝜕𝑥ଶ + 𝜕ଶ𝜙

𝜕𝑦ଶ + 𝜕ଶ𝜙
𝜕𝑧ଶ .

1

Δ𝜙(𝒓) =
𝜕􀆨𝜙

𝜕𝑥􀆨
+

𝜕􀆨𝜙

𝜕𝑦􀆨
+

𝜕􀆨𝜙

𝜕𝑧􀆨
.

1

Figure 4: Comparison of math typesetting from XeLaTEX (red)
and LuaLaTEX (blue) using Cambria Math. (The example shows
the definition of the Laplace operator in vector analysis.)

𝑅ఓఔ − 1
2𝑅𝑔

ఓఔ + 𝛬𝑔ఓఔ = −8𝜋𝐺𝑐ଶ 𝑀ఓఔ .

1

𝑅􀊅􀊆 −
1

2
𝑅𝑔􀊅􀊆 + 𝛬𝑔􀊅􀊆 = −

8𝜋𝐺

𝑐􀆨
𝑀􀊅􀊆 .

1

Figure 5: Comparison of math typesetting from XeLaTEX (red)
and LuaLaTEX (blue) using Cambria Math. (The example shows
the Einstein field equation from general relativity.)

Analyzing large-scale effects
Comparing the different versions for the same font
typeset with different engines or macro packages may
reveal significant differences at various scales.

If there are any unexpected large-scale effects, such
as using different sizes of delimiters or operators, it is
usually easy to spot them simply by visual inspection.
In most cases, such obvious differences will turn out to
be unintentional and tend to indicate problems or bugs,
such as those discussed earlier in this paper.

Analyzing small-scale effects
Once we have applied all the necessary workarounds
and bug fixes to eliminate the unexpected large-scale
effects, only small-scale effects should remain, affecting
tiny micro-typographic details, which may be hard to
see without closer inspection.

In order to the study the small-scale effects in more
detail, we created another set of more sophisticated test
files using PDF overlays between different versions of
the same document using different colors.

These overlays were generated with PDFLaTEX using
the pdfpages package as follows:

\documentclass[a4paper]{article}
\usepackage{pdfpages}

\begin{document}
\includepdfmerge[nup=2x1,noautoscale=true,
delta=-21cm 0] % width of A4 paper

{xelatex-test.pdf,1,lualatex-test.pdf,1,
...
xelatex-test.pdf,n,lualatex-test.pdf,n}

\end{document}

This setup will put each page of the LuaLaTEX test file
on top of the corresponding page of the XeLaTEX test
file. For improved visibility, colors should be chosen in
such a way that the darker colors (such as black or blue)
will appear on top of the brighter colors (such as red).
In our example illustrations we have usually used red
for XeLaTEX overlaid by blue for LuaLaTEX.

122

Experiences typesetting OpenType math with LuaLaTEX and XeLaTEX CONTEXT MEETING 2010 7

Δ𝜙(𝒓) = 𝜕ଶ𝜙
𝜕𝑥ଶ + 𝜕ଶ𝜙

𝜕𝑦ଶ + 𝜕ଶ𝜙
𝜕𝑧ଶ .

1

Δ𝜙(𝒓) =
𝜕􀆨𝜙

𝜕𝑥􀆨
+

𝜕􀆨𝜙

𝜕𝑦􀆨
+

𝜕􀆨𝜙

𝜕𝑧􀆨
.

1

Figure 6: Comparison of math typesetting from XeLaTEX (red)
and LuaLaTEX (blue) after applying a workaround for XeLaTEX
to circumvent inconsistent placement of superscripts.

𝑅ఓఔ − 1
2𝑅𝑔

ఓఔ + 𝛬𝑔ఓఔ = −8𝜋𝐺𝑐ଶ 𝑀ఓఔ .

1

𝑅􀊅􀊆 −
1

2
𝑅𝑔􀊅􀊆 + 𝛬𝑔􀊅􀊆 = −

8𝜋𝐺

𝑐􀆨
𝑀􀊅􀊆 .

1

Figure 7: Comparison of math typesetting from XeLaTEX (red)
and LuaLaTEX (blue) after applying a workaround for XeLaTEX
to circumvent inconsistent placement of superscripts.

Analyzing the results of overlays
Once we have generated overlays of the results from
typesetting the same equations with different engines,
it is easy to detect if any differences occur. However,
it is far from easy to understand how these differences
come about and what their implications might be.

In our first series of tests, we originally noticed some
very significant differences in vertical spacing around
fraction bars. Once we detected the problem of XeTEX
incorrectly using the preloaded set of font parameters
and applied a workaround, most differences in vertical
spacing disappeared and only few remained.

In our second series of tests, only relatively few
differences remained. Moreover, the remaining effects
only appeared for some fonts and not for others. While
there were hardly any effects on vertical spacing for
XITS Math, there were some notable differences in the
placement of scripts for Asana Math or Cambria Math,
as illustrated in Figures 4–5.

Upon closer inspection, we eventually found that the
differences only affected some letters within an equa-
tion, but not all of them. There were no differences
on letters without ascenders or descenders (as in 𝑥0
or 𝑥2), while there were differences for superscripts on
letters with ascenders (as in 𝜕2) and also for subscripts
on letters with descenders (as in 𝜇0). The cause of this
problem isn’t clear yet, but it most likely indicates an
unresolved engine problem in XeTEX.

In our third series of tests, the remaining effects on
vertical spacing could be eliminated completely after
we applied a workaround for the placement of scripts,
and only some effects on horizontal spacing remained,
as illustrated in Figures 6–7.

The remaining effects on horizontal spacing are most
likely related to different interpretations of OpenType
glyph metrics in different TEX engines (such as italic
corrections and math kerning [18]), which certainly
will have an effect on the quality of math typesetting,
but only on a very small scale.

Summary and Conclusions
In this paper, we have reported our experiences, find-
ings and observations from testing OpenType math
support in TEX Live 2010 with different TEX engines,
macro packages and fonts.

When we set out, we expected to gain some insights
how the quality of math typesetting was affected by the
use of additional font parameters in a more sophisti-
cated implementation of OpenType math support.

In the end, however, it turned out that most of the
differences were actually caused by unresolved bugs in
both macro packages and TEX engines, while the use of
additional math font parameters appears to be largely
irrelevant for our selection of test cases.

It was only by direct comparison with LuaTEX that
some long-standing bugs or inconsistencies in XeTEX
engine and the unicode-math package could be found.
Without a suitable baseline reference, it is obviously
hard to tell if the spacing of math is exactly right or
just slightly wrong, so it is not surprising that minor
inconsistencies went unnoticed for a long time.

Once we applied workarounds or fixes for the prob-
lems we discovered, the remaining differences between
different TEX engines turned out to be much smaller
than expected and only affected the horizontal spacing,
but no longer the vertical spacing.

Given the scale of the remaining effects, our studies
regarding the quality of math typesetting in different
TEX engines remain inconclusive for now. Both engines
can produce very similar results, but XeTEX will do so
only after applying a number of fixes and workarounds
to arrive at what LuaTEX will do by default.

Acknowledgements
The author would like to thank the developers involved
in math-related TEX engines, macro packages and fonts
for their assistance and feedback during the testing of
OpenType math font support in TEX Live 2010.

In particular, Will Robertson (unicode-math), Khaled
Hosny (luaotfload), Taco Hoekwater (LuaTEX), Hans
Hagen (ConTEXt), Jonathan Kew (XeTEX), Karl Berry
and Peter Breitenlohner (TEX Live 64-bit Linux binaries)
contributed to our testing and problem solving efforts
in one way or another.

Fortunately, we were able to discover and eliminate
a number of bugs before the deadline of TEX Live 2010
pretest. Unfortunately, not all known issues could be
resolved in time, so some problems remain to be fixed
in future releases. While such fixes for macro packages
and fonts can be issued through the TEX Live update
mechanism at any time, fixes for TEX engines may be
delayed until next year’s TEX Live release.

123

8 CONTEXT MEETING 2010 Ulrik Vieth

Cambria Math Example
Vector calculus:

𝛁𝜙(𝒓) =
∂𝜙

∂𝑥
𝒆􀉝 +

∂𝜙

∂𝑦
𝒆􀉞 +

∂𝜙

∂𝑧
𝒆􀉟 ,

Δ𝜙(𝒓) =
∂􀆨𝜙

∂𝑥􀆨
+
∂􀆨𝜙

∂𝑦􀆨
+
∂􀆨𝜙

∂𝑧􀆨
.

Maxwell equations (differential form):

div 𝜀􀆦𝑬 = 𝜆 , div𝑩 = 0 ,

rot 𝑬 = −
∂𝑩

∂𝑡
, rot

𝑩

𝜇􀆦
= 𝒋 +

∂𝜀􀆦𝑬

∂𝑡
.

Maxwell equations (integral form):

∫
􀈱

𝜀􀆦𝑬 ⋅ d𝒇 = ∫
􀉁

𝜆 d𝑉, ∫
􀈱

𝑩 ⋅ d𝒇 = 0 ,

∮
􀈮

𝑬 ⋅ d𝒍 = −
d

d𝑡
∫
􀈱

𝑩 ⋅ d𝒇 ,

∮
􀈮

𝑩

𝜇􀆦
⋅ d𝒍 = ∫

􀈱

(𝒋 +
∂𝜀􀆦𝑬

∂𝑡
) ⋅ d𝒇 .

Electromagnetic wave equations:

Δ𝑬 −
1

𝑐􀆨
∂􀆨𝑬

∂𝑡􀆨
=

1

𝜀􀆦
𝛁𝜆 + 𝜇􀆦

∂𝒋

∂𝑡
,

Δ𝑩 −
1

𝑐􀆨
∂􀆨𝑩

∂𝑡􀆨
= −𝜇􀆦 rot 𝒋 .

Energy-mass equation (special relativity):

𝐸 =
𝑚􀆦𝑐

􀆨

√1 − 𝑣􀆨/𝑐􀆨
.

Einstein 􀅝ield equation (general relativity):

𝑅􀊅􀊆 −
1

2
𝑅𝑔􀊅􀊆 + 𝛬𝑔􀊅􀊆 = −

8𝜋𝐺

𝑐􀆨
𝑀􀊅􀊆 .

Schrödinger equation (quantummechanics):

iℏ
∂𝜓

∂𝑡
= 􀐤𝐻𝜓 =

1

2𝑚
(
ℏ

i
𝛁 − 𝑞𝑨)

􀆨

𝜓 + 𝑞𝜙𝜓 .

Dirac equation (relativistic quantummechanics):

𝛾􀉺(
ℏ

i
∂􀉺 − 𝑞𝐴􀉺)𝜓 +𝑚􀆦𝑐 𝜓 = 0 .

Figure 8: Sampling of equations typeset with LuaLaTEX using
Cambria and Cambria Math.

Asana Math Example
Vector calculus:

𝛁𝜙(𝒓) =
∂𝜙
∂𝑥

𝒆𝑥 +
∂𝜙
∂𝑦

𝒆𝑦 +
∂𝜙
∂𝑧

𝒆𝑧 ,

Δ𝜙(𝒓) =
∂􀁭𝜙
∂𝑥􀁭

+
∂􀁭𝜙
∂𝑦􀁭

+
∂􀁭𝜙
∂𝑧􀁭

.

Maxwell equations (differential form):

div 𝜀􀁫𝑬 = 𝜆 , div𝑩 = 0 ,

rot 𝑬 = −
∂𝑩
∂𝑡

, rot
𝑩
𝜇􀁫

= 𝒋 +
∂𝜀􀁫𝑬
∂𝑡

.

Maxwell equations (integral form):

􀈥
𝐹
𝜀􀁫𝑬 ⋅ d𝒇 = 􀈥

𝑉
𝜆d𝑉, 􀈥

𝐹
𝑩 ⋅ d𝒇 = 0 ,

􀇰
𝐶
𝑬 ⋅ d𝒍 = −

d
d𝑡 􀈥𝐹

𝑩 ⋅ d𝒇 ,

􀇰
𝐶

𝑩
𝜇􀁫

⋅ d𝒍 = 􀈥
𝐹
􀊂 𝒋 +

∂𝜀􀁫𝑬
∂𝑡 􀊅 ⋅ d𝒇 .

Electromagnetic wave equations:

Δ𝑬 −
1
𝑐􀁭

∂􀁭𝑬
∂𝑡􀁭

=
1
𝜀􀁫

𝛁𝜆 + 𝜇􀁫
∂𝒋
∂𝑡

,

Δ𝑩 −
1
𝑐􀁭

∂􀁭𝑩
∂𝑡􀁭

= −𝜇􀁫 rot 𝒋 .

Energy-mass equation (special relativity):

𝐸 =
𝑚􀁫𝑐􀁭

√1 − 𝑣􀁭/𝑐􀁭
.

Einstein field equation (general relativity):

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −

8𝜋𝐺
𝑐􀁭

𝑀𝜇𝜈 .

Schrödinger equation (quantum mechanics):

iℏ
∂𝜓
∂𝑡

= 􀈳𝐻 𝜓 =
1
2𝑚􀊂

ℏ
i
𝛁 − 𝑞𝑨􀊅

􀁭

𝜓 + 𝑞𝜙𝜓 .

Dirac equation (relativistic quantum mechanics):

𝛾𝛼􀊂
ℏ
i
∂𝛼 − 𝑞𝐴𝛼􀊅𝜓 + 𝑚􀁫𝑐 𝜓 = 0 .

Figure 9: Sampling of equations typeset with LuaLaTEX using
TEX Gyre Pagella and Asana Math.

124

Experiences typesetting OpenType math with LuaLaTEX and XeLaTEX CONTEXT MEETING 2010 9

XITS Math Example
Vector calculus:

𝛁𝜙(𝒓) =
∂𝜙
∂𝑥

𝒆𝑥 +
∂𝜙
∂𝑦

𝒆𝑦 +
∂𝜙
∂𝑧

𝒆𝑧 ,

Δ𝜙(𝒓) =
∂2𝜙
∂𝑥2 +

∂2𝜙
∂𝑦2 +

∂2𝜙
∂𝑧2 .

Maxwell equations (differential form):

div 𝜀0𝑬 = 𝜆 , div 𝑩 = 0 ,

rot 𝑬 = −∂𝑩
∂𝑡

, rot 𝑩
𝜇0

= 𝒋 +
∂𝜀0𝑬

∂𝑡
.

Maxwell equations (integral form):

∫𝐹
𝜀0𝑬 ⋅ d𝒇 = ∫𝑉

𝜆 d𝑉 , ∫𝐹
𝑩 ⋅ d𝒇 = 0 ,

∮𝐶
𝑬 ⋅ d𝒍 = − d

d𝑡 ∫𝐹
𝑩 ⋅ d𝒇 ,

∮𝐶

𝑩
𝜇0

⋅ d𝒍 = ∫𝐹 (𝒋 +
∂𝜀0𝑬

∂𝑡) ⋅ d𝒇 .

Electromagnetic wave equations:

Δ𝑬 − 1
𝑐2

∂2𝑬
∂𝑡2 = 1

𝜀0
𝛁𝜆 + 𝜇0

∂𝒋
∂𝑡

,

Δ𝑩 − 1
𝑐2

∂2𝑩
∂𝑡2 = −𝜇0 rot 𝒋 .

Energy-mass equation (special relativity):

𝐸 =
𝑚0𝑐2

√1 − 𝑣2/𝑐2
.

Einstein field equation (general relativity):

𝑅𝜇𝜈 − 1
2

𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺
𝑐2 𝑀𝜇𝜈 .

Schrödinger equation (quantum mechanics):

iℏ
∂𝜓
∂𝑡

= 𝐻̂ 𝜓 = 1
2𝑚(

ℏ
i

𝛁 − 𝑞𝑨)

2
𝜓 + 𝑞𝜙 𝜓 .

Dirac equation (relativistic quantum mechanics):

𝛾𝛼
(

ℏ
i

∂𝛼 − 𝑞𝐴𝛼)𝜓 + 𝑚0𝑐 𝜓 = 0 .

Figure 10: Sampling of equations typeset with LuaLaTEX using
XITS and XITS Math.

Neo Euler Example
Vector calculus:

∇ϕ(𝐫) = ∂ϕ
∂x 𝐞x +

∂ϕ
∂y 𝐞y +

∂ϕ
∂z 𝐞z ,

Δϕ(𝐫) = ∂2ϕ
∂x2 + ∂

2ϕ
∂y2 +

∂2ϕ
∂z2 .

Maxwell equations (differential form):

div ε0𝐄 = λ , div𝐁 = 0 ,

rot 𝐄 = −∂𝐁∂t , rot 𝐁μ0
= 𝐣 + ∂ε0𝐄∂t .

Maxwell equations (integral form):

∫F
ε0𝐄 ⋅ d𝐟 = ∫V

λdV , ∫F
𝐁 ⋅ d𝐟 = 0 ,

∮C
𝐄 ⋅ d𝐥 = − ddt ∫F

𝐁 ⋅ d𝐟 ,

∮C
𝐁
μ0

⋅ d𝐥 = ∫F(
𝐣 + ∂ε0𝐄∂t)

⋅ d𝐟 .

Electromagnetic wave equations:

Δ𝐄 − 1
c2
∂2𝐄
∂t2 = 1

ε0
∇λ + μ0

∂𝐣
∂t ,

Δ𝐁 − 1
c2
∂2𝐁
∂t2 = −μ0 rot 𝐣 .

Energy-mass equation (special relativity):

E = m0c2

√1− v2/c2
.

Einstein field equation (general relativity):

Rµν − 12Rg
µν +Λgµν = −8πGc2 Mµν .

Schrödinger equation (quantum mechanics):

ih̄∂ψ∂t = Ĥψ =
1
2m(

h̄
i ∇ − q𝐀)

2
ψ+ qϕψ .

Dirac equation (relativistic quantum mechanics):

γα
(
h̄
i ∂α − qAα)

ψ+m0cψ = 0 .

Figure 11: Sampling of equations typeset with LuaLaTEX using
TEX Gyre Pagella and Neo Euler.

125

10 CONTEXT MEETING 2010 Ulrik Vieth

References
[1] TEX Users Group: Testing TEX Live before release.

http://tug.org/texlive/pretest
[2] Barbara Beeton, Asmus Freytag, Murray Sargent III:

Unicode Support for Mathematics.
Unicode Technical Report UTR#25. 2001.
http://www.unicode.org/reports/tr25/

[3] Barbara Beeton: Unicode and math, a combination
whose time has come. TUGboat, 21(3):174–185, 2000.
Proceedings of TUG 2000, Oxford, UK.
http://www.tug.org/TUGboat/tb21-3/tb68beet.pdf

[4] Barbara Beeton: The STIX Project – From Unicode
to fonts. TUGboat, 28(3):299–304, 2007.
Proceedings of TUG 2007, San Diego, CA, USA.
http://www.tug.org/TUGboat/tb28-3/tb90beet.pdf

[5] Ulrik Vieth: Math Typesetting in TEX: The Good,
The Bad, The Ugly. MAPS, 26:207–216, 2001.
Proceedings of EuroTEX 2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

[6] OpenType Specification, Version 1.6.
http://www.microsoft.com/typography/otspec/

[7] Murray Sargent III: Math in Office Blog.
http://blogs.msdn.com/murrays/default.aspx

[8] John Hudson, Ross Mills: Mathematical Typesetting:
Mathematical and scientific typesetting solutions.
Promotional Booklet, Microsoft, 2006.

[9] Daniel Rhatigan: Three typefaces for mathematics.
Dissertation for the MA in typeface design, 2007.
http://www.typeculture.com/academic_resource/
articles_essays/pdfs/tc_article_47.pdf

[10] Murray Sargent III: Unicode Nearly Plain Text
Encodings of Mathematics.
Unicode Technical Note UTN#28, 2006.
http://www.unicode.org/notes/tn28/

[11] George Williams: FontForge: Math typesetting
information.
http://fontforge.sourceforge.net/math.html

[12] Ulrik Vieth: Do we need a ‘Cork´ math font
encoding? TUGboat, 29(3):426–434, 2008.
Proceedings of TUG 2008, Cork, Ireland.
http://www.tug.org/TUGboat/tb29-3/tb93vieth.pdf

[13] Ulrik Vieth: OpenType Math Illuminated. Reprinted
in TUGboat, 30(1):22–31, 2009.
Proceedings of BachoTEX 2009, Bachotek, Poland.
http://www.tug.org/TUGboat/tb30-1/tb94vieth.pdf

[14] Bogusław Jackowski: Appendix G Illuminated.
TUGboat, 27(1):83–90, 2006.
Proceedings of EuroTEX 2006, Debrecen, Hungary.
http://www.tug.org/TUGboat/tb27-1/
tb86jackowski.pdf

[15] Ulrik Vieth: Understanding the æsthetics of math
typesetting. Biuletyn GUST, 5–12, 2008.
Proceedings of BachoTEX 2008, Bachotek, Poland.
http://www.gust.org.pl/projects/e-foundry/
math-support/vieth2008.pdf

[16] Jonathan: Kew: XeTEX Live. TUGboat, 29(1):151–156,
2008.
Proceedings of BachoTEX 2007, Bachotek, Poland.
http://www.tug.org/TUGboat/tb29-1/tb91kew.pdf

[17] Taco Hoekwater: LuaTEX Reference Manual.
http://www.luatex.org/svn/trunk/manual/
luatexref-t.pdf

[18] Taco Hoekwater: Math in LuaTEX 0.40.
MAPS, 38:22–31, 2009.
http://www.ntg.nl/maps/38/04.pdf

[19] Hans Hagen: Unicode Math in ConTEXt.
MAPS, 38:32–46, 2009.
http://www.ntg.nl/maps/38/05.pdf

[20] Will Robertson: Advanced font features with XeTEX:
The fontspec package. TUGboat, 26(3):215–223, 2005.
http://www.tug.org/TUGboat/tb26-3/
tb84robertson.pdf

[21] Will Robertson: The fontspec macro package.
http://www.ctan.org/pkg/fontspec
http://github.com/wspr/fontspec

[22] Will Robertson: The unicode-math macro package.
http://www.ctan.org/pkg/unicode-math
http://github.com/wspr/unicode-math

[23] Aditya Mahajan: Integrating Unicode and OpenType
math in ConTEXt. TUGboat, 30(2):243–246, 2009.
Proceedings of TUG 2009, Notre Dame, IN, USA.
https://www.tug.org/members/TUGboat/tb30-2/
tb95mahajan-cmath.pdf

[24] Khaled Hosny et al.: The luaotfload macro package.
http://www.ctan.org/pkg/luaotfload
http://github.com/khaledhosny/luaotfload

[25] Will Robertson: Unicode mathematics in LaTEX:
advantages and challenges.
To appear in TUGboat, 31(2):⁇?–⁇?, 2010.
Proceedings of TUG 2010, San Francisco, CA, USA.
https://www.tug.org/members/TUGboat/tb31-2/
tb98robertson.pdf

[26] Ulrik Vieth: Experiences typesetting mathematical
physics. MAPS, 39:166–178, 2009.
Proceedings of EuroTEX 2009, Delft, Netherlands.
https://www.tug.org/members/TUGboat/tb30-3/
tb96vieth.pdf

[27] Apostolos Syropoulos: Asana Math Font.
http://www.ctan.org/pkg/asana-math

[28] Khaled Hosny: XITS Fonts.
http://www.ctan.org/pkg/xits
http://github.com/khaledhosny/xits-math

[29] STIX Consortium: STIX Fonts.
http://www.stixfonts.org/
http://www.ctan.org/pkg/stix

[30] Khaled Hosny: Neo Euler Font.
http://github.com/khaledhosny/euler-otf

[31] Hans Hagen, Taco Hoekwater, Volker RW Schaa:
Reshaping Euler: A collaboration with Hermann
Zapf. TUGboat, 29(3):283–287, 2008.
http://www.tug.org/TUGboat/tb29-2/
tb92hagen-euler.pdf

Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

126

