L'ordre du jour étant épuisé et nul ne demandant plus la parole, d'autant que minuit approche et que cinq membres de l'assistance dorment déjà, la réunion est levée à vingt-trois heures passées de trente-sept minutes.

Patrick Bideault

0

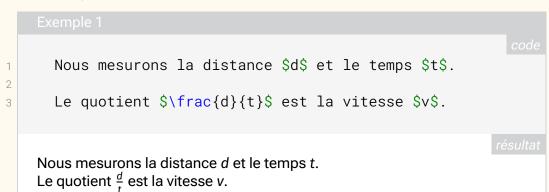
S LATEX ET L'ENSEIGNEMENT DE LA PHYSIQUE, 1 : GRANDEURS ET UNITÉS

Résumé

Cet article [1], issu de la *T_EXnische Komödie*, est le premier d'une série de huit, consacrée à l'enseignement de la physique dans le secondaire. L'auteur y aborde les règles typographiques de base pour les symboles mathématiques et les unités de mesure, explique l'utilisation du package siunitx, qui garantit la mise en forme correcte de ces dernières, présente le package schulma-physik, qui propose des compléments à ce sujet et définit également certaines constantes naturelles, et aborde enfin les particularités des symboles mathématiques grecs.

Les articles suivants traiteront des circuits électriques, des diagrammes, des instruments de mesure (analogiques comme digitaux), de mécanique, d'astronomie et autres thèmes liés à la physique.

Symboles mathématiques et symboles d'unités


La distinction entre les symboles mathématiques et les symboles d'unités est essentielle pour la composition typographique de la physique. Les symboles mathématiques, désignant une grandeur physique, sont composés en italiques, conformément à la norme internationale et à la pratique courante, comme les variables mathématiques; tandis que les symboles d'unités sont écrits en romain, comme les constantes mathématiques — voir par exemple [2] ou [3] pour une présentation plus détaillée ⁴⁰.

Dans de nombreux cas, cette convention contribue à clarifier la signification d'un symbole. Ainsi, m représente une masse, m l'unité mètre, s une surface 41 , s l'unité seconde, V un volume, V l'unité volt.

Alors que cette distinction typographique est systématiquement respectée dans les manuels scolaires, elle est négligée dans de nombreuses publications privées, dont nous ne saurions hélas exclure les manuels d'utilisation des packages LATEX. Ainsi, de fréquentes erreurs font composer les symboles des unités en italiques, probablement parce que le mode mathématique de TEX, comme d'autres programmes de mise en page, considère comme des variables les lettres dépourvues de balisage sémantique. Or ce balisage doit être effectué avec soin, car il distingue, dans le document final, caractères droits et italiques.

^{40.} NdT: ces références sont en allemand. Nous n'avons pas poussé jusqu'à les traduire.

^{41.} NdT: dans le texte original, s représentait une distance.

Pour les symboles mathématiques, il suffit de passer en mode mathématique :

La solution appropriée pour les unités de mesure, les grandeurs physiques (valeur à laquelle on adjoint une unité de mesure) et également les grandeurs sans dimension est le package siunitx, qui est présenté dans la prochaine section de la présente page.

Même si la distinction entre caractères droits et italiques est utile pour le lecteur, il serait erroné de penser qu'elle élimine toutes les ambiguïtés. Pour ne citer que quelques exemples, le symbole p peut représenter une pression ou une impulsion, h la constante de Planck ou une hauteur, c la vitesse de propagation d'une onde (par exemple la vitesse de la lumière), une capacité thermique spécifique ou — en chimie — une concentration de matière.

Les symboles des unités sont certes univoques, pour autant que l'on se limite strictement au système international d'unités ⁴² (SI), mais cela n'est pas toujours possible.

L'unité « are », qui ne fait pas partie du système international, est introduite dans tous les manuels scolaires de mathématiques du premier cycle lorsqu'il est question d'aire. L'unité « année », également absente du système international, qui est largement utilisée pour indiquer les demi-vies en physique nucléaire, est tout aussi indispensable. Dans les deux cas, le symbole de l'unité introduit est « a », de sorte que sa signification ne peut être déduite que du contexte. En outre, certaines cartes de nucléides utilisent le symbole m pour les minutes, qui ne doit bien sûr pas être interprété ici comme un mètre.

Il convient également de signaler la confusion possible entre les préfixes d'unités et les symboles d'unités. La règle typographique qui permet ici d'éviter toute ambiguïté consiste à utiliser une espace fine après les produits d'unités, mais pas après les préfixes d'unités. Ainsi, mN signifie millinewton, tandis que m N signifie « mètre fois newton », c'est-à-dire newton-mètre, pour lequel on utilise bien sûr presque toujours l'ordre inverse des symboles d'unités, ce qui évite tout risque de confusion. Il en va de même pour mA (milliampère) et m A (mètre fois ampère). D'autres exemples possibles, tels que THz pour térahertz vs. T Hz pour « tesla fois hertz » ou hA pour hectoampère par opposition à h A pour ampère-heure, ont peu d'intérêt pratique.

Grandeurs physiques et unités avec siunitx

Le package siunitx permet une représentation cohérente et typographiquement correcte des unités de mesure et des grandeurs. Il est nettement préférable à

d'autres extensions ayant des objectifs similaires en raison de ses capacités de formatage étendues, de son adaptabilité et de sa possibilité d'adaptation selon les paramètres régionaux.

Bien que l'orthographe des unités soit supranationale, il existe des différences locales dans la composition des valeurs numériques. Ce qui ailleurs 43 s'écrit 6.25 × 10^{12} s'écrit chez nous 6,25 × 10^{12} . Dans le préambule, il convient donc de sélectionner d'abord les paramètres régionaux français 44 :

```
\sisetup{locale=FR}
```

La commande centrale du package, qui a été renommée dans la version 3.0, est \qty pour les grandeurs physiques. Elle peut être utilisée à l'intérieur et à l'extérieur des formules mathématiques. La valeur numérique et l'unité doivent être spécifiées comme arguments. Pour la valeur numérique, la virgule décimale et le point décimal sont tous deux possibles (le format de sortie dépend des paramètres régionaux choisis); en cas d'utilisation de la notation scientifique, l'exposant doit être introduit par e. Le paquet fournit une séquence de commandes pour chaque unité faisant partie du système international.

```
code

\qty{1,254}{\metre}\\
\qty{5,81e7}{\kilogram}\\
\qty{86400}{\second}\\
\qty{0,00836}{\newton}

résultat

1,254 m
5,81 × 10<sup>7</sup> kg
86400 s
0,008 36 N
```

Une espace fine insécable est insérée entre la valeur numérique et l'unité. Le e saisi dans la commande est converti en puissance de dix correspondante. S'il y a plus de quatre chiffres avant ou après la virgule, ceux-ci sont regroupés par trois.

La saisie des unités sous cette forme est toutefois assez fastidieuse. C'est pourquoi le paquet fournit des raccourcis correspondant au symbole de l'unité précédé d'un tiret de commande :

```
Exemple 3

code

| \qty{1,254}{\m}\\
| \qty{5,81e7}{\kg}\\
| \qty{86400}{\s}\\
| \qty{0,00836}{\N}
```

^{43.} NdT: dans le monde anglo-saxon. Le point y est utilisé comme séparateur décimal.

^{44.} NdT: il va de soi que dans le texte original, les paramètres régionaux sont allemands; ce nombre y était donc composé ainsi: 6,25 · 10¹².

```
1,254 m
5,81 × 10<sup>7</sup> kg
86 400 s
0,008 36 N
```

Si ce code vous semble encore trop compliqué, il est possible d'omettre également les barres obliques inversées des commandes des unités, grâce au mode de saisie libre des unités que propose siunitx. Mais attention, il supprime le contrôle de la validité de l'unité ainsi que son formatage, que vous devrez effectuer vous-même.

Les multiples des unités, indiqués par leurs préfixes, sont évidemment pris en charge. Les commandes longues correspondantes permettent de former des combinaisons arbitraires :

```
\qty{25,4}{\pico\metre}\
2
      \qty{810,3}{\min\sigma\sigma}
      \qty{3,18}{\milli\second}\
3
4
      \qty{733}{\mega\newton}\
      \qty{100}{\kappailo\ohm}\
5
      \qty{550}{\tera\hertz}
    25,4 pm
    810,3 µg
    3,18 ms
    733 MN
    100 \,\mathrm{k}\Omega
    550 THz
```

Il existe des raccourcis pour les combinaisons courantes de préfixe et d'unité. Notons que le préfixe « micro » est indiqué par un « u » :

```
\qty{25,4}{\pm}\
      \qty{810,3}{\ug}\
2
      \qty{3,18}{\ms}\
3
4
      \qty{733}{\MN}\\
      \qty{100}{\kohm}\\
5
      \qty{550}{\THz}
6
   25,4 pm
   810,3 µg
   3,18 ms
   733 MN
   100 kΩ
   550 THz
```

Il n'existe pas de raccourcis pour les combinaisons exotiques telles que « micronewton », « mégamètre » ou « kiloseconde ». Si celles-ci s'avèrent vraiment nécessaires, vous pouvez utiliser la forme longue ou la saisie libre. Il est également possible de définir de nouvelles commandes d'unités; vous trouverez plus d'informations à ce sujet ci-dessous.

Il est bien évident que puissances, produits et quotients sont nécessaires. Pour la puissance deux, vous pouvez placer \square devant l'unité, pour la puissance trois, \cubic. Les puissances supérieures sont possibles en ajoutant \tothe suivi de l'exposant. Pour les produits, il suffit d'aligner les commandes d'unité les unes à la suite des autres; pour les quotients, utilisez la commande \per.

```
V=\sqrt{0,73}{\subset m}
         A=\sqrt{5e-4}{\sqrt{m}}
2
         h=\qty{4,14e-15}{\ev\s}
3
         v=\sqrt{5,28e6}{m\cdot per\s}
         $\omega=\qty{6,9}{\per\s}$\\
5
         $p=\qty{1,32e-23}{\kg\m\per\s}$\\
6
         $G=\qty{6,67e-11}{\cubic\m\per\kg\per\square\s}$\\
7
         \sigma=\sqrt{5,67e-8}{\W\epsilon^square\m\per\K\tothe{4}}
8
     V = 0.73 \,\mathrm{m}^3
     A = 5 \times 10^{-4} \,\mathrm{m}^2
     h = 4,14 \times 10^{-15} \text{ eV s}
     v = 5.28 \times 10^6 \,\mathrm{m \, s^{-1}}
     \omega = 6.9 \, \text{s}^{-1}
     p = 1,32 \times 10^{-23} \text{ kg m s}^{-1}
     G = 6,67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}

\sigma = 5,67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}
```

Quand une unité est exprimée par une fraction, on remarque que les dénominateurs sont représentés par des exposants négatifs. Mais il peut s'avérer nécessaire, pour des raisons pédagogiques, d'utiliser les notations m/s ou $\frac{m}{s}$. Pour cela, siunitx propose l'option per-mode, qui permet de sélectionner telle ou telle notation, grâce aux paramètres symbol (pour une barre oblique), fraction (pour une fraction) et power (pour la représentation standard avec des exposants négatifs). Les options peuvent n'affecter qu'une commande \qty, indépendamment des autres.

Mais en règle générale, on les ajoute à la définition de la commande \sisetup afin de les définir globalement.

Les imprécisions de mesure peuvent également être indiquées; dans le code, l'imprécision des derniers chiffres sera mise entre parenthèses. Comme la sortie standard ne correspond pas aux usages scolaires, il convient de sélectionner l'option uncertainty-mode=separate.

Outre la commande \qty présentée jusqu'à présent, on utilisera, pour les grandeurs sans unité, la commande \num et son pendant \unit pour les unités sans valeur numérique; leurs arguments correspondent respectivement au premier et au deuxième argument de \qty. Et pour composer les angles en degrés, on utilisera la commande \ang.

Les options décrites pour les fractions permettent d'afficher l'unité de la quantité de mouvement en kg m s⁻¹, kg m/s et $\frac{\text{kg m}}{\text{s}}$. Mais si quelque nécessité pédagogique

rend nécessaire la représentation du produit de la masse et de la vitesse, une petite astuce est nécessaire :

```
Exemple 11  \begin{array}{c} code \\ \mbox{ } \mbo
```

Le package siunitx ne prend en charge que les unités du système international et les unités autorisées pour être utilisées avec ce dernier. Parmi ces dernières, on trouve par exemple la minute, l'heure, le jour, l'électronvolt, l'hectare et le litre, mais pas l'année, l'année-lumière, l'are et le bar – des unités dont on ne peut se passer dans certains contextes et auxquelles les mêmes règles typographiques devraient s'appliquer.

Les nouvelles unités sont déclarées par la commande \DeclareSIUnit, dont le nom est contre-intuitif car elle est précisément utilisée pour les unités ne faisant pas partie du système international. Par exemple, la commande suivante pourrait être utile en physique nucléaire :

Il n'y a en réalité aucune marge de manœuvre dans la représentation des symboles d'unités. Une exception est l'unité litre, qui peut être représentée par L au lieu de l afin d'éviter toute confusion. siunitx prévoit la représentation par une lettre majuscule, qui concerne également les milli- et microlitres. Pour obtenir à la place la lettre minuscule normale, l'auteur du paquet recommande également la commande \DeclareSIUnit. Celle-ci peut également être utilisée pour réaliser la représentation occasionnelle, mais non conforme à la norme, par un l courbé.

```
code

\qty{3,48}{\1}\\
\qty{450}{\m1}\\
\DeclareSIUnit\litre{1}
\qty{3,48}{\1}\\
\qty{450}{\m1}\\
\qty{450}{\m1}\\
\qty{450}{\m1}\\
\qty{450}{\m1}\\
\qty{3,48}{\1}\\
\qty{3,48}{\1}\\
\lambda\qty{3,48}{\1}\\
```

Grandeurs physiques et unités avec schulma-physik

Le package schulma-physik, lui-même empaqueté dans le package schulmathematik, ne constitue pas une alternative à siunitx mais offre quelques compléments qui se sont avérés utiles dans ma pratique quotidienne.

L'un des problèmes abordés est la représentation des fractions dans les formules en mode *visualisation*. Comme on le sait, T_EX affiche les fractions courantes en mode visualisation (en version originale *display style*) plus grandes que dans le texte courant (mode *ligne*, en version originale *text style*) ⁴⁵. Cette disposition s'applique également aux unités de mesure lorsque l'option siunitx per-mode = fraction est sélectionnée.

La représentation sous forme de fraction est pratique pour les calculs, mais trop imposante pour exprimer l'unité à la toute fin de la ligne. Il est possible d'y remédier de manière élémentaire en passant au style texte à l'endroit approprié.

^{45.} Not : je reprends ici la terminologie utilisée par Bernard Desgraupes [4].

Une solution plus élégante consiste à utiliser l'option fraction-command. Le package amsmath fournit les commandes \dfrac et \tfrac pour la composer les fractions, majuscules ou minuscules, indépendamment du contexte. Une fois ce package chargé, on peut obtenir ceci :

Une alternative à cette option est désormais disponible avec le package schulmaphysik et les commandes \tqty et \tunit. Celles-ci affichent toujours les unités sous forme de petite fraction. Le t placé au début du nom de la commande fait référence au *text style* : le mode *ligne*.

schulma-physik charge siunitx avec les options locale=DE et uncertainty-mode=separate (depuis la version 1.3). Outre les commandes \tqty et \tunit, le package propose la commande \Beschl pour les accélérations en $m \, s^{-2}$.

Enfin, pour faciliter la saisie des échelles, il existe la commande \Massstab, dont les quatre arguments sont des nombres ou des unités de mesure en syntaxe siunitx.

Constantes naturelles

Les constantes naturelles apparaissent souvent (sous une forme arrondie) dans les cours de physique. Il est donc logique de les afficher à l'aide d'un package approprié, afin de ne pas avoir à saisir à chaque fois les valeurs numériques et les unités de mesure. Il serait souhaitable de disposer d'un package permettant d'afficher un nombre librement sélectionnable de chiffres valides. Un tel package n'est actuellement pas disponible.

Le package physconst offre une collection complète de constantes naturelles dans différents systèmes d'unités et affiche au choix la valeur connue la plus précise ou une valeur arrondie à trois chiffres valides. Malheureusement, ce package est inutilisable pour les documents en langue allemande, car seule la notation numérique anglaise est prise en charge. Une prise en charge des paramètres régionaux aurait été facile à obtenir en recourant à siunitx, mais elle n'était probablement pas indispensable du point de vue de l'auteur américain.

TABLEAU 13 – constantes naturelles définies par le package schulma-physik

Commande	Sortie	Commande	Sortie
\Erdb	9,81 ^m / _{s²}	\MFK	$4 \mathrm{m} \cdot 10^{-7} \mathrm{V} \mathrm{s} \mathrm{A}^{-1} \mathrm{m}^{-1}$
\Ortsf	9,81 kg 1,60 × 10 ^{−19} C	\MFK*	$1,26 \times 10^{-6} \mathrm{VsA^{-1}m^{-1}}$
\Elem	1,60 × 10 ⁻¹⁹ C	\Lichtg	$3,00 \times 10^8 \mathrm{ms^{-1}}$
\Elekm	9,11 × 10 ⁻³¹ kg	\Planck	6,63×10 ⁻³⁴ Js
\EFK	$8.85 \times 10^{-12} \mathrm{AsV^{-1}m^{-1}}$		

Une sélection de huit constantes physiques est fournie par le package schulmaphysik, qui utilise en interne siunitx (de la présente page). Les constantes sont définies à l'aide de définies avec trois chiffres valides. Pour l'accélération gravitationnelle et le facteur local, qui sont déjà abordés dans le premier cycle du secondaire, l'unité est représentée sous forme de fraction, pour les autres constantes, conformément au paramètre siunitx.

Le module dédié à la physique du package schule définit également certaines constantes naturelles. Au moment de la rédaction de cet article, il n'était toutefois pas possible de traduire correctement le code correspondant.

Lettres grecques utilisées comme symboles mathématiques

La convention, mentionnée au début de cet article et concernant l'utilisation des italiques pour les symboles mathématiques, s'applique non seulement aux lettres latines, mais aussi aux lettres grecques. Cela ne pose aucun problème pour les minuscules, car cela correspond au comportement standard de T_EX en mode mathématique.

En revanche, T_EX ne met généralement pas les lettres majuscules grecques en italiques, même en mode mathématique. En physique scolaire, cela ne concerne que la lettre majuscule phi, qui dans le secondaire est utilisée pour désigner le flux magnétique. Si l'on se contente des polices standard de T_EX, on peut très facilement créer un phi majuscule en italique avec \mathit{\Phi}.

Si vous utilisez une autre police, il se peut toutefois que cela ne fonctionne plus, car le caractère correspondant n'est pas disponible. La commande \varPhi du package amsmath peut éventuellement le remplacer. En règle générale, il est toutefois préférable d'utiliser la commande \symit du package unicode-math, car celle-ci reprend le caractère de la police mathématique actuelle.

Il serait possible de mettre en italique toutes les lettres majuscules grecques dans les formules mathématiques à l'aide du package isomath ou de l'option unicode-math math-style=ISO. Toutefois, je ne pense pas que cela soit utile pour l'enseignement de la physique dans le secondaire, car le changement d'une grandeur y est souvent décrit par un delta grec qui n'est pas mis en italique.

Avec math-style=ISO, on pourrait certes supprimer la commande \symit, mais il faudrait alors remplacer \Delta par \increment afin que le symbole ne soit pas mis en italique.

En ce qui concerne les lettres minuscules, il convient de noter que, dans les manuels scolaires germanophones, les formes d'epsilon, thêta et phi qualifiées de variantes par D. Knuth sont courantes. Il convient donc d'utiliser les commandes \varepsilon, \vartheta et \varphi pour ces lettres.

Keno Wehr

traduit par Patrick Bideault

Références

- [1] Keno Wehr. « Land Schulphysik 1 : Größen und Einheiten ». In : 35.1 (fév. 2023), p. 7-16.
- [2] Moritz Nadler. ISO-31-konformer Formelsatz in LATEX. Allemand. Version 1.0. 2018. URL: http://www.moritz-nadler.de/formelsatz.pdf.
- [3] Walter Entenmann. «ISO-80000 konformer Mathematiksatz mit LualAT_EX ». Allemand. In: *Die T_EXnische Komödie* 31.3 (août 2019), p. 28-42. URL: http://archiv.dante.de/DTK/PDF/komoedie_2019_3.pdf.
- [4] Bernard Desgraupes. *LaTeX*: apprentissage, guide et référence. Paris: Vuibert, 2000. ISBN: 9782711786589.